首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58004篇
  免费   4842篇
  国内免费   1331篇
电工技术   520篇
综合类   2867篇
化学工业   27061篇
金属工艺   1428篇
机械仪表   568篇
建筑科学   791篇
矿业工程   1119篇
能源动力   1230篇
轻工业   18252篇
水利工程   92篇
石油天然气   3379篇
武器工业   75篇
无线电   762篇
一般工业技术   3169篇
冶金工业   2040篇
原子能技术   479篇
自动化技术   345篇
  2024年   173篇
  2023年   759篇
  2022年   1215篇
  2021年   2007篇
  2020年   1728篇
  2019年   1756篇
  2018年   1541篇
  2017年   1942篇
  2016年   2033篇
  2015年   2012篇
  2014年   3074篇
  2013年   3631篇
  2012年   4263篇
  2011年   4380篇
  2010年   3143篇
  2009年   3197篇
  2008年   2782篇
  2007年   3551篇
  2006年   3295篇
  2005年   2781篇
  2004年   2366篇
  2003年   2046篇
  2002年   1787篇
  2001年   1494篇
  2000年   1286篇
  1999年   1094篇
  1998年   886篇
  1997年   631篇
  1996年   601篇
  1995年   516篇
  1994年   468篇
  1993年   389篇
  1992年   282篇
  1991年   228篇
  1990年   175篇
  1989年   109篇
  1988年   78篇
  1987年   92篇
  1986年   62篇
  1985年   78篇
  1984年   76篇
  1983年   37篇
  1982年   26篇
  1981年   18篇
  1980年   30篇
  1979年   12篇
  1978年   10篇
  1977年   8篇
  1976年   5篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
81.
In this work we demonstrate, for the first time, the use of polylactic acid (PLA) as a biodegradable host matrix for the construction of the active emissive layer of organic light‐emitting diode (OLED) devices for potential use in bioelectronics. In this preliminary study, we report a robust synthesis of two fluorescent PLA derivatives, pyrene‐PLA ( AH10 ) and perylene‐PLA ( AH11 ). These materials were prepared by the ring opening polymerisation of l ‐lactide with hydroxyalkyl‐pyrene and hydroxyalkyl‐perylene derivatives using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene as catalyst. OLEDs were fabricated from these materials using a simple device architecture involving a solution‐processed single‐emitting layer in the configuration ITO/PEDOT:PSS/PVK:OXD‐7 (35%): AH10 or AH11 (20%)/TPBi/LiF/Al (ITO, indium tin oxide; PEDOT:PSS, poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid); PVK, poly(vinylcarbazole); OXD‐7, (1,3‐phenylene)‐bis‐[5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole]; TPBi, 2,2′,2″‐(1,3,5‐benzenetriyl)tris(1‐phenyl‐1H‐benzimidazole)). The turn‐on voltage for the perylene OLED at 10 cd m–2 was around 6 V with a maximum brightness of 1200 cd m–2 at 13 V. The corresponding external quantum efficiency and device current efficiency were 1.5% and 2.8 cd A–1 respectively. In summary, this study provides proof of principle that OLEDs can be constructed from PLA, a readily available and renewable bio‐source. © 2020 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.  相似文献   
82.
Ammonia generation was studied in the reaction between water and nitrogen-containing iron at 323 K and atmospheric pressure. Similar to metallic Fe, the interstitial compound Fe3N reduced water through Fe oxidation to produce hydrogen gas, while the N combined with atomic hydrogen to produce ammonia as a byproduct. The addition of carbon dioxide to this system accelerated the reaction with concomitant consumption of carbon dioxide. The promoted ammonia production upon addition of carbon dioxide can be attributed to the generation of atomic hydrogen from the redox reaction of carbonic acid and Fe, as well as removal of used Fe from the reaction system through the formation of a soluble carbonato complex. When carbonate was added to the reaction system, the production rates of ammonia and hydrogen increased further. The results here confirmed that ammonia can be synthesized from iron nitride under mild conditions by utilizing carbon dioxide.  相似文献   
83.
Proteins displayed on the cell surface of lactic acid bacteria (LAB) perform diverse and important biochemical roles. Among these, the cell-envelope proteinases (CEPs) are one of the most widely studied and most exploited for biotechnological applications. CEPs are important players in the proteolytic system of LAB, because they are required by LAB to degrade proteins in the growth media into peptides and/or amino acids required for the nitrogen nutrition of LAB. The most important area of application of CEPs is therefore in protein hydrolysis, especially in dairy products. Also, the physical location of CEPs (i.e., being cell-envelope anchored) allows for relatively easy downstream processing (e.g., extraction) of CEPs. This review describes the biochemical features and organization of CEPs and how this fits them for the purpose of protein hydrolysis. It begins with a focus on the genetic organization and expression of CEPs. The catalytic behavior and cleavage specificities of CEPs from various LAB are also discussed. Following this, the extraction and purification of most CEPs reported to date is described. The industrial applications of CEPs in food technology, health promotion, as well as in the growing area of water purification are discussed. Techniques for improving the production and catalytic efficiency of CEPs are also given an important place in this review.  相似文献   
84.
The objective of this study was to extend a stable isotope-based assessment of AA absorption from rumen-degradable protein (RDP) sources to include determination of essential AA (EAA) availability from microbial protein (MCP). To demonstrate the technique, a study using a 2 × 2 factorial arrangement of treatments applied in a repeated 4 × 4 Latin square design was undertaken. Factors were high and low rumen-degradable protein and high and low starch. Twelve lactating cows were blocked into 3 groups according to days in milk and randomly assigned to the 4 treatment sequences. Each period was 14 d in length with 10 d of adaption followed by 4 d of ruminal infusions of 15N-labeled ammonium sulfate. On the last day of each period, a 13C-labeled AA mixture was infused into the jugular vein over a 6-h period to assess total AA entry. Rumen, blood, urine, and milk samples were collected during the infusions. Ruminal bacteria and blood samples were assessed for AA enrichment. Total plasma AA absorption rates were derived for 6 EAA from plasma 13C AA enrichment. Absorption of 6 EAA from MCP was calculated from total AA absorption based on 15N enrichment in blood and rumen bacteria. Essential AA absorption rates from total protein, MCP, and rumen-undegradable protein were derived with standard errors of the mean of 6, 14, and 14%, respectively. An average of 45% of absorbed EAA were from MCP, which varied among 6 EAA and was interactively affected by starch and RDP in diets. Microbial AA availability measured by isotope dilution method increased with the high RDP diets and was unaffected by starch level, except for Met, which decreased with high starch. Microbial protein outflow, estimated from urinary purine derivatives, increased with RDP and was not significantly affected by starch. This was consistent with measurements from the isotope dilution method. Total AA absorption rates measured from isotope dilution were similar to estimates from CNCPS (v. 6.55), but a lower proportion of absorbed AA was derived from MCP for the former method. Compared with the isotope and CNCPS estimates, the Fleming model underestimated microbial EAA and total EAA availability. An average of 58% of the absorbed EAA was converted into milk, which varied among individual AA and was interactively affected by starch and RDP in diets. The isotope dilution approach is advantageous because it provides estimates of EAA availability for individual EAA from rumen-undegradable protein and MCP directly with fewer errors of measurement than can be achieved with intestinal disappearance methods.  相似文献   
85.
L-lactic acid is an important organic acid widely used in pharmaceutical, food and textile industries. Bacillus coagulans BCS13002 can efficiently produce L-lactic acid with two kinds of carbon sources. BCS13002 produced L-lactic acid at a content of 10.23 ± 0.16 g/L and 11.67 ± 0.22 g/L, when glucose and gelatinised and hydrolysed corn starch (GHCS) were used, respectively. GHCS exhibits several advantages, including high yield of L-lactic acid and low cost. Proteomics analyses identified several key enzymes, which contributed to the higher production of L-lactic acid when GHCS was used as the carbon source. Those key enzymes were involved in the two-component system (SpoOF), pantothenate and CoA biosynthesis (pantothenate synthetase, 1.584-fold; dihydroxy-acid dehydratase, 1.517-fold), beta-alanine metabolism (1.605-fold) and valine, leucine and isoleucine biosynthesis (1.517-fold) pathways. This study provides a biological basis for using GHCS as a substitute of glucose in the production of L-lactic acid.  相似文献   
86.
In the present research, nanostructured Pd–Cd alloy electrocatalysts with different compositions were produced using the electrodeposition process. The morphology of the samples was studied by scanning electron microscopy analysis. Also, the elemental composition of the samples was determined by energy-dispersive X-ray spectroscopy and elemental mapping tests. Tafel polarization and electrochemical impedance spectroscopy methods were employed to determine the electrochemical corrosion properties of the synthesized samples in a solution containing 0.5 M sulfuric acid and 0.1 M formic acid. The linear sweep voltammetry, cyclic voltammetry, and chronoamperometry techniques were also employed to evaluate the electrocatalytic activity of prepared samples toward the oxidation of formic acid. In this respect, the influence of some factors such as formic acid and sulfuric acid concentrations and also potential scan rate was investigated. Compared to the pure Pd sample, the Pd–Cd samples were more reactive for the oxidation of formic acid. Besides, the sample with a lower amount of Pd (Pd1·3Cd) demonstrated much higher electrocatalytic activity than the Pd7·1Cd and Pd2·1Cd samples. The observed high mass activity of 15.06 A mg?1Pd for the Pd1·3Cd sample which is 21.1 times higher than Pd/C is an interesting result of this study.  相似文献   
87.
The increase in the production of acid gas consisting of H2S, CO2, and associated impurities such as ammonia and hydrocarbons from oil and gas plants and gasification facilities has stimulated the interest in the development of alternative means of acid gas utilization to produce hydrogen and sulfur, simultaneously. The present literature lacks a detailed reaction mechanism that can reliably predict the thermal destruction of NH3 and its blend with H2S and CO2 to facilitate process optimization and commercialization. In this paper, a detailed mechanism of NH3 pyrolysis is developed and is merged with the reactions of NH3 oxidation and H2S/CO2 thermal decomposition from our previous works. The mechanism is validated successfully using different sets of experimental data on the pyrolysis and oxidation of NH3, H2S, and CO2. The proposed mechanism predicts the experimental data on NH3 pyrolysis remarkably better than the existing mechanisms in the literature. The mechanism is used to investigate the effects of NH3 concentration (0–20%) and reactor temperature (1000–1800 K) on the thermal decomposition of H2S and CO2. A synergistic effect is observed in the simultaneous decomposition of NH3 and CO2, i.e., NH3 conversion is improved in the presence of CO2 and the decomposition CO2 to CO is enhanced in the presence of NH3. The presence of H2S suppressed NH3 conversion, while the conversion of H2S remained unchanged with increasing NH3 concentration at temperature below 1400 K due to the low conversion of NH3 (up to 18%). At temperature above 1400 K, NH3 conversion increased rapidly and it triggered a decrease in H2S conversion as well as the yields of H2 and S2. The major reactions involved in the decomposition of H2S, CO2, and NH3 and the production of major products such as H2, S2, and CO are identified. The detailed reaction mechanism can facilitate the design and optimization of acid gas thermal decomposition to produce hydrogen and sulfur, simultaneously.  相似文献   
88.
用戊糖片球菌、罗伊氏乳杆菌、鼠李糖乳杆菌、植物乳杆菌、嗜酸乳杆菌共5?种乳酸菌发酵库车小白杏,通过比较发酵液在发酵过程中的菌浓度、pH值、总可溶性固形物(total soluble solids,TSS)含量、超氧化物歧化酶(superoxide dismutase,SOD)活性等理化特性及发酵结束后的感官评价,筛选出一种或几种适合发酵库车小白杏发酵液的菌株。结果表明,发酵结束后,戊糖片球菌发酵库车小白杏发酵液的SOD活性达到252.63?U/g,活菌数达到8.07(lg(CFU/mL)),TSS含量降至17.1?°Brix,感官总体评价值最佳达到97%。植物乳杆菌发酵的库车小白杏发酵液的SOD活性达到275.87?U/g,感官总体评价几何平均(geometrical mean,GM)值达到88%。嗜酸乳杆菌发酵的库车小白杏发酵液速度最快,活菌数最终达到9.95(lg(CFU/mL)),TSS含量降至16.6?°Brix,但感官总体评价GM值仅为79%。综上所述,戊糖片球菌是最适合发酵库车小白杏的菌种,而植物乳杆菌和嗜酸乳杆菌的适合度仅次于戊糖片球菌。通过比较5?种乳酸菌发酵的库车小白杏发酵液的理化性质和感官评价,可以得出结论,戊糖片球菌最适合发酵库车小白杏。  相似文献   
89.
Bio-hydrogenated diesel (BHD) is a second generation biofuel that can be produced from vegetable oil and hydrogen via hydroprocessing. BHD is considered as one of alternative and renewable energy. This work presents evaluation of environmental impacts of BHD produced from palm fatty acid distillate (PFAD) compared to fatty acid methyl ester (FAME). Greenhouse gas emission, energy consumption, and overall environmental impacts are assessed. System boundary is from palm oil cultivation to BHD production. The functional unit is defined as 1 kg of fuel produced at the plant. The results indicate that energy consumption of BHD-PFAD is 1.18 times higher than that of BHD-FAME, while giving GHG emission 13.56 times lower than that of BHD-FAME. The results of overall environmental impacts indicated that BHD-PFAD was 3.58 greater than that of BHD-FAME.  相似文献   
90.
Utilizing natural waste as carbon source to prepare porous carbon with ultrahigh surface area and developing a facile protocol to synthesize supported metal nanoparticles toward an efficient formic acid (FA) decomposition are vital but remains challenging. Here, discarded ginkgo leaves were utilized as carbon source to prepare ginkgo leaf-derived porous carbon (GLPC) with an ultrahigh surface area of 3851 m2/g. Based on the as-prepared nitrogen-doped GLPC (N-GLPC) after “soft” nitriding, a facile solid-state reduction strategy with mortar-pestle grinding and without the use of any organic solvent and stabilizing ligand was developed to synthesize ultrafine and well-distributed Pd nanoparticles (NPs) with a diameter of 2.7 ± 0.7 nm. The “soft” nitriding temperature and addition of base during preparation played vital roles in the activity of the fabricated catalysts. The Pd/N-GLPC-350 exhibited the highest catalytic activity toward decomposing FA, achieving a high turnover frequency of 2952 h?1 at 333 K. The Pd/N-GLPC-350 was quite stable and could be reused at least five times without evident activity loss. This study provides a facile solid-state reduction protocol with mortar-pestle grinding to synthesize metal NPs by using natural waste-derived porous carbon as support toward efficient FA decomposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号